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Abstract. Polaron effects on excitons in parabolic quantum wells are studied theoretically by using a
variational approach with the so-called fractional dimension model. The numerical results for the exciton
binding energies and longitudinal-optical phonon contributions in GaAs/Al0.3Ga0.7As parabolic quantum
well structures are obtained as functions of the well width. It is shown that the exciton binding energies
are obviously reduced by the electron (hole)-phonon interaction and the polaron effects are un-negligible.
The results demonstrate that the fractional-dimension variational theory is effectual in the investigations
of excitonic polaron problems in parabolic quantum wells.

PACS. 71.35.-y Excitons and related phenomena – 71.38.-k Polarons and electron-phonon interactions

1 Introduction

With the development of semiconductor crystal growth
techniques, quantum well (QW) structures can be suc-
cessfully fabricated in different shapes, such as the square
quantum well (SQW), triangular quantum well (TQW)
and parabolic quantum well (PQW) [1–5]. Recently, op-
tical and electric properties of PQW structures have at-
tracted much attention because of their application poten-
tial. These properties are closely related to excitonic states
and their coupling with optical phonon modes. There has
been a considerable amount of experimental and theoret-
ical works on the properties of excitons in different PQW
structures [1,6–9]. The energies of exciton states in PQW
structures have been calculated by using various technolo-
gies, such as the variational and perturbation-variational
schemes [1,6], the functional integral technique [7] and
also the fractional-dimensional space formalism [8,9].

As was well-known, the phonon modes and their inter-
actions with electrons and holes in multi-layer structures
become more complicated than that in bulk materials be-
cause of the break of the translational symmetry in the
direction normal to interfaces. The electron-phonon (e-p)
interaction in SQW structures has been investigated fully
within the framework of continuous medium approxima-
tion [10–12]. However, these results cannot be immedi-
ately used to PQW systems. Some theoretical literatures
have initially mentioned the e-p effects on the electron
states in PQW structures by various approximations. Hai
et al considered an electron interacting with bulk longi-
tudinal optical (LO) phonons in a PQW and calculated
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the polaron energy and effective mass by a perturbation
method [13]. The polaron problem in this kind of systems
was also investigated by using the Lee-Low-Pines (LLP)
like variational method, where the slab and half-spacing
modes respectively for the confined well and barrier LO
phonons are considered similar to that in a SQW [14].
As an approximation, the interface optical phonon modes
were omitted in the above-mentioned papers because of
the less difference between the well and barrier materials
in the vicinity of the interfaces. The authors have recently
discussed the e-p effect on polarons in PQW structures
[15] and confirmed that the bulk-LO-phonon model is an
acceptable approximation.

Many authors have calculated the binding energies of
excitons in SQWs [16–25] by various variational methods.
Generally speaking, the successful variational calculations
need more complicated trial wave functions with many pa-
rameters, so that the computations are time-consuming.
Ponomarev et al. introduced a self-consistent approach to
study the characteristics of excitons in shallow QWs and
obtained an analytical expression for the exciton bind-
ing energy and the ground state eigenfunction [26]. Some
authors have used a fractional-dimensional space model
to discuss the exciton states in low-dimension structures,
and obtained a surprisingly accurate estimation for the
binding energy [27–29]. The simpler and effective method
was also used to treat polaron problems [9,30,31]. How-
ever, to our knowledge, the exciton-phonon interaction in
PQW structures has rarely been discussed concretely.

In this paper a fractional-dimensional method in com-
bination with a LLP-like transformation and a varia-
tional treatment is developed to investigate the polaron



42 The European Physical Journal B

effects on excitons in PQWs. A characteristic potential
confinement length and an effective space dimension for
the exciton-phonon system in a PQW are introduced
and evaluated. A trial wave function with a fractional-
dimensional variational parameter is used to calculate the
exciton energy. As an example, the numerical results for
the GaAs/Al0.3Ga0.7As PQW are given and discussed.

2 LLP-like transformation and variational
treatment

Let us consider a PQW structure with the well-width
2d generated by alternating multiple layers of GaAs and
AlxGa1−xAs of varying thickness along z-direction [1].
The relative thickness of the GaAs layers in the well de-
creases quadratically with increasing the distance from the
well center (z = 0). The barrier material AlxGa1−xAs is
filled in the space of |z| > 2d. An exciton couples with a
phonon field in the PQW system. The Hamiltonian of the
exciton-phonon system then can be written as

H = Hex +Hph +Hex−ph. (1)

The first term in equation (1) is the Hamiltonian of a bare
exciton without including the phonon influence and can be
described within the framework of the isotropic effective
mass approximation by

Hex = − �
2

2m1
∇2

1 −
�

2

2m2
∇2

2 −
e2

ε∞ |�r1 − �r2| + Uwell, (2)

where sub-labels “1” and “2” refer to the electron and hole
respectively. ε∞ is the high frequency dielectric constant
and

Uwell =
∑

j

Vj(zj), (2a)

where Vj(zj) is the parabolic well potential for the electron
(j = 1) or hole (j = 2) and given by

Vj(zj) =
{

V0j

d2 z
2
j , |zj | � d;

V0j , |zj | > d.
(j = 1, 2). (2b)

Here V0j is the well-depth for the electron (hole) and de-
pends on the composition x of AlxGa1−xAs [14]. Using the
mass-center coordinate system, the bare exciton Hamilto-
nian (2) can be rewritten as

Hex = − �
2

2M
∇2

R − �
2

2µ
∇2

r −
e2

ε∞r
+ Uwell. (3)

The excitonic mass-center and relative coordinates in
equation (3) are given respectively by

�R = β1�r1 + β2�r2, �r = �r1 − �r2,

where β1 = m1/M and β2 = m2/M. M = m1 + m2

and µ = m1m2/M stand for the mass-center and reduced
masses, respectively.

The second term in equation (1) is the free-phonon-
field Hamiltonian

Hph =
∑

q

�ωa†qaq, (4)

where a†q and aq are respectively the creation and annihi-
lation operators of the LO-phonon with the frequency ω
and wave-vector q .

The last term in equation (1) stands for the exciton-
phonon interaction Hamiltonian and has the following
form in the bulk-LO-phonons approximation [13,15]:

Hex−ph =
∑

q

[Vqaqe
i�q·�R(eiβ2�q·�r − e−iβ1�q·�r) + h.c.], (5)

where

Vq = i

[
2πe2

V
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. (6)

Carrying out two LLP-like unitary transformations

U1 = exp

[
i

(
�K −

∑

q

a†qaq�q

)
· �R

]
(7)

and

U2 = exp

[
∑

q

(
a†qfq − aqf

∗
q

)
]
, (8)

the exciton-phonon system Hamiltonian becomes

H∗ = U−1
2 U−1

1 HU1U2

= Hex +
∑

q

(
�ω +

�
2q2

2M

)
(a†q + f∗

q )(aq + fq)

+
∑

q

[Vq(aq + fq)(eiβ2�q·�r − e−iβ1�q·�r) + h.c.], (9)

where the multi-phonon processes have been neglected in
the mono-phonon approximation. The displacement am-
plitudes fq and f∗

q will be variationally determined later.
We now start with a variational method to calculate

the ground state energy of the exciton. The ground state
wave function of the exciton-phonon system is chosen as

|ψ〉 = |φ(�r)〉 |0〉 , (10)

where |0〉 is the zero-phonon state, and |φ(�r)〉 is a trial
wave function for the excitonic ground state and will be
determined by a fractional-dimensional variational treat-
ment. Then the variational energy of the excitonic ground-
state can be calculated as

E = 〈0| 〈φ(�r)|H∗ |φ(�r)〉 |0〉

= E0 +
�

2

2M

∑

q

f∗
q fq(u2 + q2)+

∑
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V (q)(Vqfq+V ∗
q f

∗
q ),

(11)
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where

E0 = 〈φ(�r)|Hex|φ(�r)〉, (12)

V (q) = 〈φ(�r)
∣∣eiβ2q̄·�r − e−iβ1q̄·�r∣∣φ(�r)〉, (13)

and
u2 = (2Mω/�)1/2

. (14)

Solving the minimum equation

∂E

∂fq
=

∂E

∂f∗
q

= 0, (15)

one can obtain the displacement amplitudes fq and f∗
q as

follows

fq =
−V ∗(q)V ∗

q

�2(u2 + q2)/2M
(16a)

and

f∗
q =

−V (q)Vq

�2(u2 + q2)/2M
. (16b)

Substituting equations (16a) and (16b) into equation (11),
we obtain the variational energy as

E = E0 −
∑

q

|V (q)|2|Vq|2
�2(u2 + q2)/2M

. (17)

The ground state energy of the exciton is then determined
by minimizing equation (17).

3 Fractional-dimensional space approach

Now we consider a fractional dimension space description
for the excitonic ground state in a PQW. The so-called
fractional dimension model has been proposed to calcu-
late the exciton binding energy in a SQW by previous
authors [27,28]. In this approach, an effective dimension
D of the system is simply introduced instead of the com-
plicated calculations for the quantum well. The binding
energy of the confined exciton in the well is written as [27]

En =
R∗

y

[n+ (D − 3)/2]2
, (18)

where n=1, 2, 3,. . . corresponds to the hydrogen-like
bound state. R∗

y is the effective three dimensional (3D)
Rydberg and the dimensionality D is determined by [28]

D = 3 − exp (−L/a∗B) . (19)

Here a∗B is the 3D effective Bohr radius and L the char-
acteristic potential confinement length in the z-direction.
For a QW structure the dimension D can be determined
as a value between 2 and 3 by different methods [9,27–32].
Kyrychenko et al have determined L by solving a differen-
tial equation for polarons in an “infinite” PQW [32]. Here
we consider a “finite” PQW and determine L and D for
excitons by a variational calculation.

The Hamiltonian of an electron (hole) moving in the
finite PQW can be written as

Hj = − (1 − βj)
∂2

∂z2
j

+ Vj (zj) , (j = 1, 2) (20)

where Vj(zj) is determined by equation (2b). Choosing
the trial wave function for the ground state of the electron
(hole) in the system as

ψ(zj) =

(√
2
π

1
λj

)1/2

exp(−z2
j /λ

2
j), (21)

the corresponding variational energy is given by

Ej(λj) = 〈ψ(zj)|Hj |ψ(zj)〉 . (22)

Here λj is the variational parameter characterizing the
localization range of the electron (hole) in the PQW, and
can be determined by the following equation:

∂Ej(λj)
∂λj

∣∣∣∣
λj=λj min

= 0.

The characteristic potential confinement length of exci-
tons in the PQW is then chosen as the larger one in the
localization ranges of the electron and hole, namely

L = max(λ1 min, λ2 min). (23)

As an example, we have performed the numerical calcula-
tion for the confinement length L and the dimensionality
D in the finite GaAs/Al0.3Ga0.7As PQW, and the results
as functions of the half well-width are shown in Figure 1.
It is found from Figure 1a that the calculated results for
the confinement length L in this work are in coincidence
with reference [32] in the case of larger well width, where
L increases monotonously with increasing the well-width.
Otherwise, when the well-width is getting narrower, L de-
creases monotonously for the infinite well in reference [32],
but appears a minimum and then increases rapidly for the
finite PQW in our results. The results are physically rea-
sonable and will be used to calculate the excitonic energy
in the finite PQW.

Now let us calculate variationally the excitonic ground-
state energy by linking the LLP-like transformations with
the fractional dimension model for the finite PQW. The
trail wave function in equation (10) is chosen similarly to
the 3D form:

φ(r) =

√
1
πλ3

exp
(
− r

λ

)
, (24)

but the variational parameterλ is related to the space frac-
tional dimension D. The variational calculation will be
performed in the D-dimensional space.

As we well-known, the variational energy of the exciton
ground state in a 3D system is written as

E(3)
0

= 〈φ(r)| − ∇2 − 2/r|φ(r)〉 =
1
λ2

− 2
λ
. (25)
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Fig. 1. Characteristic potential confinement length (a) and
the fractional dimension (b) as functions of the half well-width
in the GaAs/Al0.3Ga0.7As PQW. The dashed line in (a) is the
result of reference [32] in the infinite PQW approximation.

Here the energy is measured in the 3D Rydberg and the
length in 3D Bohr radius. Extending this expression into
the fractional dimension model, the excitonic ground-state
energy in the PQW can be written as the D-dimensional
space form:

E(D)
0

=
1
λ2

− 2
λ (1 − e−L/2)

. (26)

Minimizing (26), the variational parameter and the upper-
limit energy of the exctionic ground state without the
phonon influence can be easily determined as

λ =
(
1 − e−L/2

)
(27a)

and

Emin
0 = − 1

(1 − e−L/2)2
. (27b)

It is expected that the variational parameter λ reduces to 1
and equation (26) degenerates to the 3D form (E(3)

0 = −1)
when L → ∞, otherwise λ reduces to 1/2 and the 2D
result (E(2)

0 = −4) is obtained at the limit of L→ 0.
Substituting (24) into (12) and (13) and then (17),

we obtain finally the variational energy of the exciton in-

Fig. 2. Binding energies of the exciton without phonon influ-
ence as functions of the well-width for the GaAs/Al0.3Ga0.7As
PQW. The solid line is given by this work and “dotted” and
“dashed” lines by the methods of references [32] and [19] re-
spectively.

cluding the LO-phonon effect in the fractional dimensional
model:

E(λ) =
1
λ2

− 2
λ (1 − e−L/2)

− α�ω
2
π

∞∫

0

dx
1

1 + β1β2x2

[
16

[4 + (β1λux)2]2

− 16
[4 + (β2λux)2]2

]2

, (28)

where α = (Me2/�2u)(1/ε∞−1/ε0) is the exciton-phonon
coupling constant. The above-obtained numerical results
of the confinement length L will be used in the computa-
tion for the excitonic energy.

The ground state energy of the exciton-phonon system
is given by

Eg = min
λ
E(λ). (29)

The exciton binding energy Eb can be defined by

Eb = Efree − Eg. (30)

In equation (30) Efree is the sum of the energies of the
free electron and hole polarons, which can be calculated
by the method used in reference [15], and here we use the
results directly but omit the detail for short.

4 Numerical results and discussions

The binding energy of the exciton in the GaAs/
Al0.3Ga0.7As PQW have been computed numerically by
the fractional-dimension variational approach and the re-
sults are illustrated in Figures 2–5.

Our results for the excitonic binding energy with-
out including the phonon influence in the finite-barrier
GaAs/Al0.3Ga0.7As PQW are plotted as a function of the
well-width in Figure 2 (solid line). Kyrychenko et al has
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Fig. 3. Binding energies of the exciton without phonon influ-
ence as functions of the well-width for the GaAs/Al0.3Ga0.7As
PQW given by this work (solid line), and for the SQW from
reference [17] (dotted) and reference [28] (dashed line) respec-
tively.

calculated the excitonic binding energies in the infinite
CdTe/Cd0.8Mn0.2Te PQW by using fractional dimension
model [32]. We have calculated the corresponding ener-
gies in the infinite GaAs/Al0.3Ga0.7As PQW by using
their model and plot the curve (dotted line) in Figure 2
for comparison. In the meantime, we also illustrate the
general variational results (dashed line) for the infinite
GaAs/Al0.3Ga0.7As PQW given by Yang et al. [19] in the
same figure. For ease of comparison, the material param-
eters in the calculations have been chosen as those used
by the previous authors [19].

It is seen that the binding energy increase monoto-
nously with decreasing the well-width and our result is
excellently in agreement with those given by the previous
methods [19,32] for the wide-well case. Otherwise, in the
narrower well region the binding energy curve of this work
for the finite-depth PQW system gets a knee point quali-
tatively different from those in infinite-depth well approxi-
mation, where the binding energies increase monotonously
to the 2D values as the well-width tends to zero. It is eas-
ily understood that the binding energy first increases with
decreasing the well-width for the wider-well case, since the
exciton wave function remains mainly confined in the well.
Once the well-width is reduced and less than the exciton
size, the excitonic wave function will penetrates into the
barriers so that the binding energy decreases suddenly. It
follows that the fractional-dimension variational approach
gives the reasonable results and is simpler and useable for
finite PQW systems.

In Figure 3 we compare our result for the GaAs/
Al0.3Ga0.7As PQW with those for the SQW obtained by
a variational approach [17] and the fractional dimension
model [28]. It can be seen that the exciton binding en-
ergies in the PQW are smaller than those in the SQW
at small well-widths, but larger than those at larger well-
widths. This is due to the fact that the wave functions
in the PQW penetrate more easily into the barriers than
that in the SQW for the narrow wells, but the confinement
is stronger than the latter in the wider well case.

Fig. 4. Exciton binding energies with (solid line) and without
phonon contributions (dashed line) as functions of the well-
width in the finite GaAs/Al0.3Ga0.7As PQW.

Fig. 5. Contribution of LO-phonons to the binding energy
of the exciton as a function of the well-width in the finite
GaAs/Al0.3Ga0.7As PQW.

Figure 4 plots the curves of the binding energies of
the exciton with and without phonon contributions re-
spectively as functions of the well-width in the finite
GaAs/Al0.3Ga0.7As PQW. It is found that the binding
energies of the exciton, either with or without the phonon
contributions, increase rapidly at beginning with increas-
ing the well-width and get the maxima at a well-width of
around 10nm, then decrease and finally approach to their
3D values when the well-width is large enough. Moreover,
it is also seen that the binding energy is reduced by the
exciton-phonon interaction because of the phonon screen-
ing on the Coulomb potential. The contribution of the
exciton-phonon coupling to the binding energies is around
15–30% for the calculated system and cannot be neglected.

To understand the polaron effect clearly, we have also
illustrated the contribution of LO-phonons to the bind-
ing energy of the exciton in the same system as a func-
tion of the well-width in Figure 5. It is shown that the
contribution of LO-phonons varies non-monotonously be-
cause of the non-monotony of the dimension D with the
well-width. When the well-width decreases, the exciton-
phonon coupling effect increases firstly with the reduction
of the system dimension D and then gets a maximum at a
well-width slightly over the exciton size, where the exciton
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localization is almost strongest and the fractional dimen-
sion of the system is smallest. Once the well-width is less
than the above-mentioned width, the e-p contribution to
the binding energy is reduced with the penetration of the
exciton wave function.

5 Conclusions

In summary, we have introduced a fractional-dimensional
variational approach to calculate the binding energy of an
exciton interacting with bulk longitudinal optical phonons
in finite-barrier parabolic quantum wells. The confinement
length and the space dimension for an exciton-phonon
system in a parabolic quantum well have been deter-
mined and used in the variational calculation. As an ex-
ample, the numerical results for the GaAs/Al0.3Ga0.7As
parabolic quantum well are given. It is found that the
binding energies of excitons are reduced by the exciton-
phonon interaction and the corresponding polaronic ef-
fects are un-negligible. The exciton binding energies and
the phonon contributions as functions of the well-width
have their maxima because of the penetration of the exci-
ton wave function, different from those in infinite quantum
well approximation. It is demonstrated that the fractional-
dimension variational approach developed here is use-
able in the investigations of excitonic polaron problems
in parabolic quantum wells.
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